Hue Histograms to Spatiotemporal Local Features for Action Recognition
نویسندگان
چکیده
Despite the recent developments in spatiotemporal local features for action recognition in video sequences, local color information has so far been ignored. However, color has been proved an important element to the success of automated recognition of objects and scenes. In this paper we extend the space-time interest point descriptor STIP to take into account the color information on the features’ neighborhood. We compare the performance of our color-aware version of STIP (which we have called HueSTIP) with the original one.
منابع مشابه
Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملReal-time Action Recognition by Spatiotemporal Semantic and Structural Forests
This paper presents a novel real-time action recogniser by utilising both local appearance and structural information. Our method is able to recognise actions continuously in real-time while achieving comparably high accuracy over state-of-the-arts. Run-time speed is of vital importance in real-world action recognition systems, but existing methods seldom take computational complexity into full...
متن کاملMulti-Scale Locality-Constrained Spatiotemporal Coding for Local Feature Based Human Action Recognition
We propose a Multiscale Locality-Constrained Spatiotemporal Coding (MLSC) method to improve the traditional bag of features (BoF) algorithm which ignores the spatiotemporal relationship of local features for human action recognition in video. To model this spatiotemporal relationship, MLSC involves the spatiotemporal position of local feature into feature coding processing. It projects local fe...
متن کاملHuman Detection by Boosting-Based Co-occurrence of HOG and Color Feature
In this paper, we propose a method for human detection using co-occurrence of Histograms of Oriented Gradients (HOG) features and color features. This method expresses the co-occurrence between HOG and color features by Adaboost and generates the combination of the features effective for the identification automatically. Color features were calculated by making histograms that quantized hue and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1104.3742 شماره
صفحات -
تاریخ انتشار 2011